# Effect of surgical technique and thread design on implant stability in posterior maxilla. A clinical study using Resonance Frequency Analysis

Aleksa Marković\*, José Luis Calvo-Guirado\*\*, Zoran Lazić\*\*\*, Gerardo Gómez-Moreno\*\*\*\*, Dejan Ćalasan\*, Javier Guardia\*\*\*\*, Snježana Čolić\*, Antonio Aguilar-Salvatierra\*\*\*\*, Bojan Gačić\*, Rafael Delgado-Ruiz\*\*, Bojan Janjić\*, Tijana Mišić\*

\*School of Dentistry, Belgrade, Serbia; \*\*Faculty of Medicine and Dentistry, Murcia, Spain; \*\*\*Military Academy, Belgrade, Serbia; \*\*\*\*Dental School, Granada, Spain;

#### Topic: Basic research

#### Abstract

This clinical study aimed to investigate effect of surgical technique and thread design on stability of implants placed into low-density bone present in the posterior maxilla. Implant stability was estimated using Resonance Frequency Analysis during the12-week follow-up period. Lateral bone condensing technique provides optimal implant stability in low density bone regardless of implant thread design whilst following bone drilling technique, the use of self-tapping implants is highly recommended for improving implant stability.

## **Background and Aim**

Implant stability, an important prerequisite for successful osseointegration, depends on implant macro and micro design, surgical technique and bone density. Low-density bone offers loose support and in a such condition sufficient implant stability could be achieved using undersized preparation technique, wider implant diameter, placement of conical, self-tapping implants or by condensing of the implant site.

The aim of the study was to investigate mutual effect of surgical technique (lateral condensing vs drilling) and thread design (self-tapping vs non self-tapping) on stability of implants placed in lowdensity bone of posterior maxilla.

### **Methods and Materials**

- •Inclusion criteria: bilateral lack of one or more maxillary premolar and/or molar, subantral bone height of ≥12mm, width of the residual alveolar ridge of ≥6.2mm and bone density type 3 or 4 (Lekholm and Zarb).
- •Patients: 53 generally healthy patients (25 women and 28 men), with an average age of 43.9 years were randomly divided into 4 study groups according to the implant site preparation technique and implant thread design:

Group 1: Lateral bone condensing and Self-tapping implants Group 2: Lateral bone condensing and Non Self-tapping implants Group 3: Bone drilling and Self-tapping implants Group 4: Bone drilling and Non Self-tapping implants

- Implants: 51 Self-tapping 4x10mm blueSky® (Bredent, Senden Germany) and 51 Non Self tapping 4.1x10mm Standard Plus ® (Institut Straumann AG, Waldenburg, Switzerland) were placed in posterior maxilla.
- Implant stability measurements: immediately after implant placement and weekly during the
  - 12-week follow-up period using Resonance Frequency Analysis with an Osstell Mentor® device (OsstellIntegration Diagnostics Savadaled, Sweden).





Lateral bone condensing







Non self-tapping implant placement implant placement



Implant stability measurement



#### Results

•6 implants were excluded (ISQ 42-46): 2 from group 2 and 4 from group 4.

- · Implants placed after lateral bone condensing achieved significantly higher stability during the entire 12-week follow-up period compared with implants placed following bone drilling, regardless of thread design (Mann-Whitney Test, p<0.05).
- After lateral bone condensing, self-tapping implants achieved significantly higher stability compared with non self-tapping implants except immediately after placement and in the 1<sup>st</sup> and 6<sup>th</sup> week when differences were insignificant (Mann-Whitney Test, p>0.05).

self-tapping implants during the entire follow-up period (Mann-Whitney Test, p<0.05).

Implant stability changes during 12-week follow-up period



### Conclusions

of implant thread design.

•Following bone drilling technique, the use of self-tapping implants is highly recommended for improving implant stability.

### References

Tapping Dental Implants. A 12-Week Clinical Study. Clinical implant dentistry and related research 2011 Dec 15. [2] Lekholm U, Zarb GA. Patient selection and preparation. In: Branemark PI, Zarb GA, Albrektsson T, editors. Tissue-Integrated Prostheses:Osseointegration in clinical dentistry. 1st ed. Chicago: Quintessence; 1985. p. 199-210. [3] Martinez H. Davarpanah M. Missika P. Celletti R. Lazzara R. Optimal implant stabilization in low density bone. Clinical oral implants research 2001 Oct;12(5):423-32.

presented on the 5th international SKY Meeting 2012

26.-28. April 2012 Sofitel Munich Bayerpost

- · Self-tapping implants placed following bone drilling achieved significantly higher stability compared with non

- ·Lateral bone condensing technique provides optimal implant stability in low density bone regardless

[1] Markovic A, Calvo-Guirado JL, Lazic Z, Gomez-Moreno G, Calasan D, Guardia J, et al. Evaluation of Primary Stability of Self-Tapping and Non-Self-